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ABSTRACT: A three-dimensional finite element program called VISCOPAC was

developed and used to conduct a micromechanics analysis of titanium metal matrix

composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-

viscoplastic constitutive model to predict matrix behavior under thermomechanical

fatigue loading. The analysis incorporated temperature-dependent elastic

properties in the fiber and temperature-dependent viscoplastic properties in the

matrix. The material model was described and the necessary material constants

were determined experimentally. Fiber-matrix interfacial behavior was analyzed

using a discrete fiber-matrix model. The thermal residual stresses due to the

fabdcaton cycle were predicted with a failed interface. The failed interface

resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to

a uniform transverse load were calculated at two temperatures, room temperature

and an elevated temperature of 650°C. At both temperatures, a large stress

concentration was calculated when the interface had failed. The results indicate the

importance of accurately accounting for fiber-matrix interface failure and the need

for a micromechanics-based analytical technique to understand and predict the

behavior of titanium metal matrix composites.

Keywords: thermal residual stresses, interface, finite element analysis,

viscoplasticity, discrete fiber-matrix model

INTRODUCTION

Fiber-matrix interfaces can play a key role in the mechanical behavior of continuous fiber-

reinforced metal matrix composites 0VIMC) [1]. Interfaces govern the mode and extent of

load transfer between the fiber and matrix. To predict composite behavior, it is necessary to

understand interfacial behavior, including fiber-matrix debonding. Because of the large

differences that can occur in the coefficients of thermal expansion of the fiber and the matrix,

large thermal residual stresses can develop in the composite during cooldown from the

fabrication temperature. Due to the high operating temperatures of MMC, the time-dependent

behavior of the matrix should also be accounted for. Thus, it is important to model the

thermal residual stresses that may be present as well as the time- and temperature-dependent

behavior of the titanium matrix to understand and predict the composite behavior.

The fiber-matrix interface plays a particularly significant role in MMC with a matrix having a

high yield strength. To study the stress state governing fiber-matrix debonding, a



micromechanics analysis is required. A three-dimensional (3D) finite element (FE) program

called VISCOPAC was used to conduct a micromechanics analysis. The VISCOPAC program

uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix

behavior under thermomechanical fatigue (TMF) loading.

In the present paper, the capabilities of the VISCOPAC program are described, including the

viscoplastic constitutive theory. To demonstrate the VISCOPAC program, a 3D FE unit cell

micromechanics model is used to analyze the fiber-matrix interfacial behavior. The thermal

residual stresses due to the fabrication cycle are predicted. The effects of the fiber-matrix

interface failure and the time-dependent behavior of the matrix on the stress state in the unit

cell are examined.

ANALYTICAL METHOD

Analytical predictions of the overall response of the composite material were performed with

the VISCOPAC computer program developed by Bahei-E1-Din for viscoplastic analysis of

homogeneous and orthotropic materials subjected to thermomechanical loading. For

homogeneous materials, the inelastic strain is predicted from the unified theory described in

Appendix A. The viscoplastic constitutive theory implemented into the VISCOPAC program

was developed by Bahei-E1-Din, Shah, and Dvorak [2] for high temperature applications and is

based on the viscoplastic theory of Eisenberg and Yen [3]. This constitutive theory is a unified

theory, where creep and plasticity are combined, with a yield surface. The theory assumes the

existence of an equilibrium stress-strain response which corresponds to the theoretical lower

bound of the dynamic response. State variables include the equilibrium stress and an isotropic

hardening function. Evolution laws of the state variables account for thermal recovery. A

two-surface plasticity theory, where the two surfaces are the yield surface and the bounding

surface, describe the state variables under nonproportional loading. In addition, this

constitutive viscoplastic model assumes that the elastic response is rate-independent and that

inelastic rate-dependent deformation takes place if the current stress state is greater than the

equilibrium stress. The theory requires three elastic constants and 20 viscoplastic constants as

a function of temperature. The viscoplastic constants will also be dependent upon the loading

rate. These constants are described in more detail in Appendix A. By assuming the effects of

thermal recovery and isotropic hardening were negligible for this material, the number of

required constants is reduced to three elastic and six viscoplastic constants. These material

constants include the elastic modulus (E), Poisson's ratio (v) , the coefficient of thermal

expansion (a), the yield stress (O:ys)' the yield stress of the bounding surface (Crys), and the
viscoplastic parameters, Ho, h, l_, and p.

The overall strain of unidirectionally reinforced composite materials is evaluated from the

inelastic strain of the homogeneous phases by means of elastic strain transformation factors

which depend on the elastic properties of the fiber and matrix, the fiber volume fraction, and

the micromechanical interaction of the phases. In the VISCOPAC program, the user has a

choice of one of three averaging models: the self-consistent model [4], the Mori-Tanaka

model [5], or the vanishing-fiber-diameter material (VFD) model [6, 7, 8]. Each model is

briefly described in the following paragraphs.
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The self-consistentmodel [4] is centered on the solution to the problem of a single fiber

embedded in an unbounded homogeneous medium which is macroscopically indistinguishable

from the composite. Under any uniform loading, the fiber strain is uniform. According to the

basic idea of the self-consistent model, the fiber strain is assumed to be the average of the

fibers in the composite.

Having noted the important role of image stress in work hardening of dispersion hardened

materials, Mori and Tanaka [5] developed a method of calculating the average internal stress in

the matrix of a material containing inclusions. They showed that the average stress in the

matrix is uniform throughout the material and independent of the position within the domain.

The actual stress in the matrix is the average stress plus the locally fluctuating stress, the

average of which vanishes in the matrix. The model also considers the average elastic energy

by accounting for the effects of the interaction among the inclusions and the presence of the

free boundary.

The VFD model [6, 7, 8] consists of an elastic-viscoplastic matrix unidirectionally reinforced

by continuous elastic fibers. Both constituents are assumed to be homogeneous and isotropic.

The fibers are assumed to have a very small diameter, so that although the fibers occupy a

finite volume fraction of the composite, they do not interfere with matrix deformation in the

two transverse directions, but only in the axial (fiber) direction.

MATERIALS AND TEST SPECIMENS

The material modeled in this study was SCS-6/Timetal-21S which is fabricated by hot isostatic

pressing (HIPing) Ti-15Mo-3Nb-3A1-0.2Si foils between tapes of unidirectional SCS-6 silicon-

carbide fibers. A fiber volume fraction of 38.5% with a fiber diameter of 0.14 mm was used.

The matrix material constants needed for constitutive model used in VISCOPAC were

determined experimentally by testing neat Timetal-21S material that had been subjected to the

same processing cycle as the composite material. Prior to testing, all test specimens were heat

treated (aged) at 621°C for eight hours in vacuum to stabilize the matrix material.

EXPERIMENTAL TECHNIQUES

All experiments were conducted using a 100-kN closed-loop servohydraulic test frame

equipped with water-cooled hydraulic grips. The test specimens were heated using a 5 kW

induction generator with three independent coils. The induction generator was controlled by a

temperature profiler capable of running predetermined temperature profiles. K-type

thermocouples were used to monitor and control the temperature along a 50-mm gauge length

section in the center of the specimen. In addition, an infrared thermovision camera was used

to insure that the temperature distribution was uniform along the gage section of the specimen.

MATRIX MATERIAL CONSTANTS

The matrix material constants used in the VISCOPAC program are given in Table 1. These

material constants include the elastic modulus (E), Poisson's ratio (v) , the coefficient of

thermal expansion (a), the yield stress (O-ys) , the yield stress of the bounding surface (Crys),
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and the viscoplasticparameters, Ho, h, k, and p. The coefficient of thermal expansion was

determined from a load-controlled experiment. A test specimen, under zero load, was

subjected to temperature increments ranging from -130°C to 816°C. At each temperature

increment, the temperature was held constant (about 1 minute) to allow for stabilization. The

temperatures and the corresponding thermal strains were fit to a third degree polynomial using

the method of least squares. The resulting polynomial function was differentiated with respect

to temperature to determine the coefficient of thermal expansion as a function of temperature.

The elastic modulus and the yield stress were determined from the linear portion and the onset

of nonlinearity of the stress-strain curve, respectively, at each temperature.

Strain-controlled tests were used to define the equilibrium stress-strain curves, following the

procedures defined by Mirdamadi, et al. [9]. As schematically illustrated in Figure 1, to allow

stress relaxation, five-minute hold periods were imposed at predetermined strain levels. At

each temperature, a minimum of five strain levels were selected to construct the equilibrium

stress-strain curve. The strain rate during the loading was lxl0 "4 mm/mm/sec. The

equilibrium curve was then approximated by fitting to a power law equation as described by

Mirdamadi and Johnson [10]. Once the equilibrium curve is known, the constants k and p

are determined by conducting a uniaxial tensile test under load control. As shown

schematically in Figure 2, the overstress R is defined as the difference between the

equilibrium curve and the loading curve. The inelastic strain rate 6in can be written as a

function of the overstress R and the constants k and p as fin = k RP. By plotting the

inelastic strain rate gin and R on a log-log plot, the constant k is found as the y-axis intercept

and the constant p is found as the slope of the plot.

The remaining viscoplastic constants, Ho, h, O:s, and _-s, are determined from the

equilibrium curve as shown in Figure 3. H o is the s_pe of the _unding curve, definedby the

asymptotic value of the equilibrium curve. The yield stress of the bounding curve _r is
ys

defined as the y-intercept of the line defining the slope H o. The constant h is determined

from the equation of the instantaneous slope of the equilibrium curve, H = H o + h[8/(_ n -

o9]. Figure 4 shows the predicted stress-strain curves at three temperature, compared to the

test data. The agreement between the viscoplastic theory and experiment is very good.

ANALYTICAL MODELING

The VISCOPAC program was used to analyze a discrete fiber-matrix (DFM) model assuming

an infinitely repeating, rectangular array of fibers, rather than use one of the averaging models

contained in the program. The VISCOPAC program uses three dimensional, eight-noded

hexahedral elements and calculates the stresses at the element centroids. The ply thickness

(0.104 mm), the fiber volume fraction (38.5%), and the fiber radius (0.070 ram) were used to

calculate the dimensions of the model, as shown in Figure 5. The ply thickness, the fiber

volume fraction, and the fiber diameter are typical for silicon-carbide/titanium matrix

composites. Figure 5 also shows the finite element mesh refinement that was used. The

model shown in Figure 5 was used with the appropriate boundary conditions to represent a
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single fiber in an infinite array of fibers. For the single fiber in an infinite array, compatibility

with adjacent unit cells was enforced on each face of the model by constraining all normal

displacements to be equal. On the x = 0 face, the x-displacements were set to zero, on the y

= 0 face, the y-displacements were set to zero, and on the z = 0 face, the z-displacements

were set to zero. On the x = 0.096 mm face, the x-displacements were constrained to be

equal to each other such that the plane remained plane. That is all nodes in the plane were free

to move, but all nodes in that plane moved the same amount in the x-direction. Likewise for

the y = 0.104-mm plane and the z = 0.02-mm plane. A convergence study was done on the

mesh shown in Figure 5. For the thermal loading used here, the mesh shown in Figure 5

predicted stresses that differed by less than 5 % from those predicted by a mesh with twice the

refinement.

Two loading conditions were analyzed. The thermal residual stresses due to the processing

cycle and the mechanical stresses due to a uniform transverse loading were calculated.

Stresses were calculated assuming an intact interface and a failed interface. A perfect bond

between the fiber and matrix was assumed for the intact cases. The failed interface was

modeled by modifying the element properties of the layer of matrix material next to the fiber.

The interface was assumed to be failed from the start of the loading, i.e., progressive damage

was not modeled. A very thin layer of elements was introduced next to the fiber; the thickness

of the interface was modeled as 0.0001 mm, compared to the fiber radius of 0.07 mm. To

model the failed interface, the modulus of this interface layer was set to 50 MPa, compared to

the room temperature modulus of the matrix of 116 GPa. To calculate the thermal residual

stresses, the temperature was assumed to be uniform throughout the laminate and only the

thermal cycle occurring during the fabrication process is analyzed in the present work.

Thermal residual stresses were calculated assuming a temperature change of-629°C; that is a

temperature change from 650°C to room temperature 21.1°C. This temperature change is

approximately one half of the melting point of the Ti-15-3 matrix. It was assumed that any

residual stresses that developed during fabrication of the composite would be relieved due to

relaxation at temperatures greater than one half the melting point of the matrix [11]. The fiber

was assumed to remain elastic with temperature dependent properties. The elastic properties

of the fiber are given in Table 2.

RESULTS AND DISCUSSION

Stress contours, based on element centroid values, are plotted for both loading conditions with

an intact and a failed interface.

Thermal Residual Stresses

A time period of one hour was used to simulate the fabrication process, although, since no

viscoplastic behavior was predicted, the time used to simulate the cooldown cycle was

immaterial. Figures 6 and 7 show the trxx stresses produced by the simulated cooldown cycle
with an intact and failed interface, respectively. The dashed line shown in the figures

represents the fiber-matrix boundary. For comparison purposes, the same scale for the stresses

contours in used in both figures. This results in some detail being lost in Figure 6, where the

stresses are greater due to the constraint provided by the intact interface. For the intact

interface, Figure 6, the trxx stresses range from approximately -400 to 475 MPa. The



maximum tensile and compressive stresses are not shown in Figure 6 due to the stress contour

levels chosen. The maximum tensile stress occurred in the upper left comer of the model and

the maximum compressive stresses occurred in the lower right hand comer of the model. For

the failed interface, Figure 7, the trxr stresses range from approximately -200 to 295 MPa.

The intact interface results in a greater constraint between the fiber and matrix, producing

larger residual stresses. Although not shown, the calculated the cr_ stresses were nearly

identical to the trxx stresses. If the DFM model had been symmetric, the Crxx and o: would

have been identical. The transverse stresses, crxx and Cryy, govern the raY/_ial and
circumferential cracking in the matrix, fiber and interface region. The lower stresses in the

case of the failed interface indicate a lesser propensity for matrix cracking once the interface
has failed.

Figures 8 and 9 show the Crzz stresses produced by the simulated cooldown with an intact and

a failed interface, respectively. In Figure 8, the Crz.z stresses are nearly uniform in both the
fiber and matrix, with a maximum compressive stress of -835 MPa in the fiber and a

maximum tensile stress of 558 MPa in the matrix. In the interface region, next to the fiber, a

steep stress gradient is found due to the intact interface. In Figure 9, the Crz.z stresses are still
nearly uniform in the fiber, but with a maximum value of-768 MPa, compared to the case of

the intact interface. The region of stress gradient next to the fiber is larger in the case of the

failed interface and the maximum value of tensile or_ stress in the matrix is smaller for the

failed interface, 487 MPa compared to the value of 5/'_8 MPa for the intact interface. Again,

the intact interface produces a greater constraint between the fiber and matrix, resulting in
larger thermal residual stresses. The difference between the intact and failed cases is not as

great for tr the axial stress as for the transverse stresses. The axial stress governs axial
cracking in "_:_oth the fiber and the matrix. The thermal residual stresses would act as a

prestress that could affect the composite properties and subsequent mechanical behavior. The

axial stress calculations indicate that a smaller mechanical axial load would be necessary for
the failed interface compared to the intact interface to overcome the thermal residual stresses.

Mechanical Loading

A transverse loading was applied to the model shown in Figure 5. A uniform stress in the y-

direction was applied to the y = 0.104-mm face with a loading rate of 2.56 MPa/sec. Two

isothermal conditions were analyzed, T = 21.1 °C and 650 °C. Both the intact and failed

interface were modeled. The loading was applied and the stress contours were plotted at time

t = 200 seconds. As shown in Figure 10 for the case of intact interfaces, at this time (t = 200

sec), for T = 21. I°C the overall behavior of the composite is still within the elastic regime,

while for T = 650°C, the overall behavior is well into the inelastic regime. Inelastic behavior

of the matrix was determined by comparing the von Mises equivalent stress calculated at

appropriate temperature to the yield stress shown in Table 2. When the von Mises equivalent

stress was greater than or equal to the yield stress, inelastic behavior of the matrix was

assumed. The yon Mises equivalent stress trvm is defined as follows:

O'vm = _/d + O_y + d- O'x O'y- O'yO"z- O'zO'x +3(_xy + _z + _zx)



Figures 11 and 12 show the calculatedvon Mises stresscontoursat T = 21.1°C, t = 200

seconds, for the intact and failed interface cases, respectively. The matrix yield stress at T =

21.1°C is 910 MPa. As shown in Figure 11, even though the overall stress-strain behavior is

still within the elastic region, for a small portion of the matrix (the upper left hand comer of

the model), the von Mises stress is greater than the matrix yield stress, indicating inelastic

behavior. For the case of the failed interface, as shown in Figure 12, the matrix is well into

the inelastic regime. A large stress concentration is calculated in the lower right hand comer

of the model. The maximum stress calculated for the case of the failed interface is nearly five

times greater than the maximum stress in the case of the intact interface.

Figures 13 and 14 show the calculated von Mises stress contours at T = 650°C, t = 200

seconds, for the intact and failed interface cases, respectively. The matrix yield stress at T =

650°C is 43.5 MPa. At this temperature, the overall stress-strain behavior is exhibiting

considerable inelastic behavior, even with an intact interface. As shown in Figure 13, all of

the matrix is at a stress level greater than the yield stress. A stress concentration above the

fiber is calculated for the intact interface case. For the case of the failed interface (Figure 14),

a stress concentration is calculated in the lower right hand comer of the model. Here the

maximum stress is about 10% greater than for the intact interface case and the region of

maximum stress is considerable larger than for the intact interface case. The stress in the fiber

is reduced by about 20% for the failed interface, compared to the intact interface case.

Comparing the stress states with a failed interface at the two temperatures, Figures 12 and 14,

shows the two stress states have very similar trends. The magnitude of the stress is more than

twice as large at room temperature than at the elevated temperature. The stress states at the

two temperatures with the intact interfaces, Figures 11 and 13, however, are considerably

different. As shown in Figure 11, the stress state at room temperature is more uniform than at

the elevated temperature, even though the magnitudes of the stresses in both cases are nearly

the same.

CONCLUDING REMARKS

A three-dimensional finite element program called VISCOPAC was developed and used to

conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC

program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict

matrix behavior under thermomechanical fatigue loadings. The analysis incorporated

temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic

properties in the matrix. The material model was described and the necessary material

constants were determined experimentally. The predictions of matrix behavior were accurate

at a range of temperatures.

A micromechanics model was used to analyze the fiber-matrix interfacial behavior. The

thermal residual stresses due to the fabrication cycle were calculated. The stresses due to a

transverse mechanical loading under isothermal loading conditions were also calculated. The
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effectsof the fiber-matrix interface failure and the time-dependent behavior of the matrix on
the stress state in the unit cell were examined.

The thermal residual stresses produced during the fabrication of the composite were simulated

by applying a thermal load of -629°C. Significant stresses were calculated due to the

simulated cooldown. The failed interface resulted in lower thermal residual stresses in the

matrix and fiber. There was less constraint between the fiber and matrix in this case, thus,

lowering the stresses in the constituents.

Stresses due to a uniform transverse load were calculated at two temperatures, room

temperature and an elevated temperature of 650°C. The extent of inelastic behavior was

studied by comparing the calculated von Mises stress state to the yield stress of the matrix. At

both temperatures, a large stress concentration was calculated when the interface had failed.

At room temperature, the stress with the failed interface was over five times as large as the

stress with the intact interface. The difference was not as great at the elevated temperature.

Significant inelastic behavior was shown at both temperatures when the interface was failed,

although the magnitude of the stresses was considerably lower at the elevated temperature.

The results indicate the importance of accurately accounting for fiber-matrix interface failure

and the need for a micromechanics-based analytical technique to understand and predict the

behavior of titanium metal matrix composites.
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APPENDIX A - VISCO-PLASTIC CONSTITUTIVE MATERIAL MODEL

The thermo-viscoplastic constitutive equations developed by Bahei, et al., [2] and Shah [12]

were used to describe the behavior of each homogenous phase of the composite material. At

low homologous temperatures, and isothermal conditions, the constitutive theory reduces to the

formulation by Eisenberg and Yen [3] in a form more suitable for nonproportional loading.

The total strain rate is decomposed into elastic, thermal, and inelastic parts. The inelastic

strain rate is found as a function of the overstress measured from an equilibrium yield surface

which delineates the stress states that can be reached from the current state by purely elastic

deformations. In the presence of kinematic and isotropic hardening, a Mises form of the

current equilibrium yield surface can be written as

3 • •

f : _- (s/j - fl/j )(s_] - f/j ) - (Y + Q)2
(A1)

where s/j is the deviatoric equilibrium stress tensor, flu denotes the center of the yield

surface, Y = Y('I') is the temperature dependent yield stress in tension, which is independent of

the loading rate, and Q is an isotropic hardening function. Figure A1 depicts the equilibrium

yield surface f in the deviatoric stress space, where K o is the initial yield stress in shear.

Corresponding to a given stress tensor s 0. which lies outside the yield surface (Eq. A1), there

exists an equilibrium stress si/ which satisfies Eq. A1 and is determined as the intersection of

the equilibrium surface and the line connecting the stress point and the center of the

equilibrium surface ,B/j. Hence,

• =[ 2[Y(T)+Q(T)] 2 ]1/2
(A2)

The effective overstress R is a measure of the distance between the actual stress point s/j and
lit

the equilibrium stress point s/j such that R vanishes if the actual stress point lies on, or falls

within, the yield surface. Thus,

. •

R = _ [($/j - s 0. )(s 0. - sij )]1/2 (y + Q)2 iff(sij-Pij) > 0 (A3)

R = 0 iff(sij- ,Bij) <_ 0 (A4)

The inelastic strain rate is found from an associated flow rule in which the strain rate is normal

to the equilibrium yield surface and its magnitude is assumed to be in the form of a power law

of the overstress [3]
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./n

cu = (AS)

(A6)

where the functions k(T) and p(T) are material parameters and n_/ is the unit normal to the
yield surface (Eq. A1) at the current equilibrium stress point.

The evolution equation for Q, which includes the effect of inelastic deformation and thermal

recovery on the yield stress, is given by

• in

= q(T)[Q,, (T) -q]-6 - b, (1") Q- Q, (T)I'(r)-_[Q-Q, (T)] (A7)

The functions

parameters, and

qa(T), q(T), br(T) , qr(T), and nr(T)
• Ill

6 is the effective inelastic strain rate

are temperature dependent material

" 2 • " • " • "

6 = ['_6o 6o ]"_ = k(T)Rp(r); cn, = 0 (A8)

Total (Qr(T) = 0) or partial (Qr(T) ¢ 0) thermal recovery is represented by the second term in

Eq. (A7).

In analogy with Eq. (AT), and permitting complete thermal recovery of kinematic hardening,

the evolution equation for the center of the yield surface 'flu can be written as

ao =/.t vi/- c, (T)a("(r)-') a# a = (Ctk, akl )1/2 (A9)

where Cr(T) and mr(T) are material parameters. The unit tensor vii defines the direction of

translation of the yield surface in the deviatoric stress space and can'be specified according to

the hardening rules applied in rate-dependent plasticity theories. If the Phillips hardening rule
is selected then

v0 = s,//(sk, sk,) ',2 if s,j¢O (A10)

v/j = n_/ if sij =0 (All)

The factor /z in Eq. (A9) is found from Pmeger's consistency condition, f = 0, when

translation of the yield surface is specified by the first term in Eq. (A9). The result is

12



/J= .q_ /3k(T)Rp(T)[H(T) - q(T)[Q a (7')- Q]] /nk/vk/ (A12)

A two-surface plasticity theory [13] can be used to describe evolution of the instantaneous

tangent modulus H in terms of the distance, in the deviatoric space, between the equilibrium

yield surface and a bounding surface at which the instantaneous tangent modulus assumes an

experimentally measured asymptotic value H o as shown in Figure 3. A Mises form of the

equilibrium bounding surface is written as

3 - __i))(so.__O.)_(y+Q)2 =0f =_(s O.
(A13)

where s 0. is the bounding stress tensor, fl/j denotes the center of the bounding surface,

Y = Y(T) is the tensile bounding stress, which is independent of the loading rate, and Q is

an isotropic hardening function. Figure A1 depicts the bounding surface in the deviatoric

stress space, where K0 is the initial yield stress in shear.

The instantaneous tangent modulus for the quasi-static response H is then found as

H(T)= Ho(T)+h(T)[6/(4 . -6)] "_r) (A14)

where 6/n is the distance between the yield surface and the bounding surface at the onset of
inelastic deformation. When the equilibrium stress point lies on the bounding surface, the

plastic tangent modulus assumes the asymptotic value Ho(T). Parameters ho, h, and m need
to be determined experimentally as functions of temperature.

In analogy with the equilibrium yield surface, thermal recovery of isotropic as well as

kinematic hardening of the bounding surface are included in the model.. The rate equations for

and fl/j are

(A16)

Functions Qa(T), q(T), br(T), _)r(T), nr(T), cr(T), and mr(T) are material parameters

which must be estimated based on experimental results. The unit tensor u U defined the

13



direction of translation of the bounding surface relative to the equilibrium surface in the

deviatoric stress space, as shown in Figure A 1.

14



APPENDIX B - FAILURE CRITERIA

The form of the failure criteria specified in the VISCOPAC program depends on the type of

material. For isotropic materials, the following failure envelope is specified in the stress

space:

(o.,)_ _(o,)2-7- -Lo=o (al)

where

4, + +4, - o,,o,,- o.=o.,,- o.,,o',, (B2)

_-, = 3(o._12+_3 +cr_) (B3)

and ._, is the average stress in an element and o u and zu are the strength of the material

under_ormal and shear stress, respectively. The failure surface given by eqs. (B1-B3) is

reminiscent of the Mises yield surface but with different strength magnitudes under normal and

shear stresses.

For fibrous composite materials, the user can choose among two failure criteria available in

the VISCOPAC program; one based on the overall stress and one based on the fiber stress. In

either case, only the axial normal stress and the longitudinal shear stress components appear in

the failure criteria. Specifically, the failure envelope is given by

( 0"23 )2
f = ( °'33 )2 + ( °'!3 ): +. r" " - 1.0 = 0-_- -_-

(a4)

or

f=(___.___33)2+(____A_13)2+(________)21.0= 0 fB5)

Here o_j__is the overall stress and o_u is_the fiber stress specified in a Cartesian coordinate

system x k , k = 1 ,2,3, such that the x I -axis coincides with the fiber direction, and x 2 x 3

coincides with the transverse plane. The symbols o u and zu denote the overall strength of the

fibrous composite under axial normal stress and longitudinal shear stress, respectively.

Similarly, o _.if and ruf denote the fiber strength under axial normal stress and longitudinal

shear stress, respectively.

15



Table 1 - Material Properties for Neat Timetal-21S

Stress rate of 2.56 MPa/sec

Temperature (°C) 21.1 115. 482. 650.

E (MPa) 116000 116000 95851 64393

v 0.34 0.34 0.34 0.34

a (mm/mm/°C) 7.52e-6 7.52e-6 10.6e-6 11.8e-6

_._ys (MPa) 910. 910. 472. 43.52
o-,,_ (MPa) 969. 969. 561. 69.

//'o (MPa) 829. 829. 1135. 300.

h O¢lPa) 17111. 17111. 26168 7552

k 2. le-21 2. le-21 5.4e- 18 2.2e- 12

p 8.59 8.59 6.35 3.46

Table 2 - Elastic Properties for SCS-6 Fiber

Temperature
o C

E

Pa

21.11 3.93E11

93.33 3.90E11

V £t

mm/mm/°C

.25 3.564E-6

.25 3.564E-6

204.44 3.86E11 .25 3.618E-6

315.56 3.82E 11 .25 3.726E-6

426.67 3.78E 11 .25 3.906E-6

537.78 3.74E 11 .25 4.068E-6

64 8.89 3.70E 11 .25 4.266E-6

760.00 3.65E11 .25 4.410E-6

871.11 3.61E11 .25 4.572E-6

1093.30 3.54E11 .25

16
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